US009471784B1

United States Patent

(12) (10) Patent No.: US 9,471,784 B1
Marr et al. 45) Date of Patent: *Oct. 18, 2016
(54) AUTOMATED FIRMWARE SETTINGS 2001/0042243 Al* 11/2001 Fishetal.cccoovinnn 717/6
VERIFICATION 2005/0021723 Al* 1/2005 Saperia .. 709/223
2005/0289071 AL* 12/2005 Goin et al. ...oooociccvrrrnens 705/56
-~ . 2006/0069534 Al 3/2006 Kinney
2007/0074199 Al* 3/2007 Schoenberg 717/168
(71) Applicant: %nslazon Technologies, Inc., Reno, NV
Us) 2008/0154957 Al* 6/2008 Taylor et al. 707/104.1
2008/0208365 Al* 82008 Grgic et al. . .. 700/2
(72) Inventors: Michael David Marr, Monroe, WA 2009/0013321 Al* 1/2009 Mattiocco et al. . . 718/1
(US); Anirudh Balachandra Aithal, 2010/0145671 Al* 6/2010 Allstrom et al. 703/21
Seattle, WA (US); Matthew David 2010/0217843 Al* 82010 Dehaanccc..... GOGF 8/65
Klein, Seattle, WA (US) 7097221
ein, Seattle, 2011/0022192 Al* 1/2011 Plache et al. ...vorvrreen, 700/28
. 2012/0124572 A1* 52012 Cunningham et al. 718/1
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) OTHER PUBLICATIONS
(*) Notice: Subject.to any disclaimer,. the term of this USS. Appl. No. 13/706,729, filed Dec. 6, 2012, Marr et al.
patent is extended or adjusted under 35 ;g Ansi No. 13/706,779, filed Dec. 6, 2012, Marr et al.
U.S.C. 154(b) by 503 days.
This patent is subject to a terminal dis- * cited by examiner
laimer.
cratmer Primary Examiner — Kim Huynh
(21) Appl. No.: 13/706,839 Assistant Examiner — Brandon Kinsey
(74) Attorney, Agent, or Firm — Baker & Hostetler LLP
(22) Filed: Dec. 6, 2012
57 ABSTRACT
(1) Int. Cl. Systems and methods are described for managing computing
GO6F 21/57 (2013.01) - -
resources. In one embodiment, data representative of an
(52) US. ClL abstracted firmware framework is maintained. The data may
C.PC o e GO6F 21/572 (2013.01) comprise computing firmware settings and determined
(58) Field of Classification Search based on standardized associations between vendor-specific
CPC .. GOG6F 8/61; GOGF 8/65; GOGF 8/66; firmware settings and abstracted firmware settings that are
GOGF 8/665; GOGF 9/455; HOAL 67/34; independent of the vendor-specific firmware settings. In
o H04L 41/0813 response to receiving a request for a computing firmware
See application file for complete search history. setting, the requested computing firmware setting is trans-
. lated to one or more vendor-specific firmware settings based
(56) References Cited on the data. A computing resource capable of implementing
U.S. PATENT DOCUMENTS the one or more vendor-specific firmware settings is iden-
o tified.
7,818,515 B1* 10/2010 Umbehocker et al. 711/154
8,583,769 B1* 11/2013 Peters et al. 709/221 17 Claims, 7 Drawing Sheets
start
02
— receive request for

desired attribute

computing resource with

!

to provide firmware
settings

504
identify computing device

!

508
translate attribute to
firmware settings

YES
A 4

508
firmware settings
{mplemented?

512
provide sttribute on
computing device

L

US 9,471,784 Bl

Sheet 1 of 7

Oct. 18, 2016

U.S. Patent

} "Old

4
oct | OFl
WA | Jenies - >
081
/ Jlomaulel 061
, 06l =
\ sbumes Aemaren)
\ -
ol | 0Fl - >
WA | Joaleg
o

001

0Lt 09T

TP

0G| YIOMISN

US 9,471,784 B1

Sheet 2 of 7

Oct. 18, 2016

U.S. Patent

¢ Old

Jabeuepy
rQONN
NA WA
_agiz
JANISS
a1z | sy
Jabeuepy
N—eozz
NA WA
JONIBS \—eglz
(E9l¢

0l ¢ 491U ejeg

0EC YI0MPdN
SUOIIBOILUNWIWOD

US 9,471,784 B1

Sheet 3 of 7

Oct. 18, 2016

U.S. Patent

1 d
— N N
8le
uonenbiLo H O
alemulll4 $82.JN0SBY
80¢
dnoug
H 9
| E
— d 0
vle
uoneJnbiLoD d v
alemulLll $92JN0SvY
$0€
dnoio

€ 'Old

91¢€

uone.nbiyuon

alemulll4

S|

v

$821N0STY

90¢
dnoun

(453

uoneinbiyuo)

aJemul4

l

O

S|

v

$92.N0S9Y

US 9,471,784 B1

Sheet 4 of 7

Oct. 18, 2016

U.S. Patent

ADE —
Jonleg
AR K 147 [747% t447%
WA JONIDS WA NA NA
0¥
ylomawel
sbumeg
aJemulli]
gov | Zov | 90% 0cy
WA | Jenies | WA Jonles

U.S. Patent

Oct. 18, 2016

502
receive request for
computing resource with
desired attribute

'

504
identify computing device
to provide firmware
settings

l

506
translate attribute to
firmware settings

508
firmware settings
implemented?,

YES

Y

312
provide attribute on |

Sheet 5 of 7

US 9,471,784 B1

NO—»

510
implement and
verify

computing device

FIG. 5

U.S. Patent Oct. 18, 2016 Sheet 6 of 7 US 9,471,784 B1

600
start

| 892 maintaining
mappings

'

604 receive request for
attribute

608
map i%ound? NO—p>| initiating
P ' remediation

YES

Y

610
provide mapping

FIG. 6

U.S. Patent

Oct. 18, 2016

702 form groupings

Y

704
receive request for
attribute

'

706
identify
firmware setting

708
at least one
grouping?

YES

y

12
provide attribute

Sheet 7 of 7

US 9,471,784 B1

NO—

create new
grouping

710

FIG. 7

US 9,471,784 Bl

1
AUTOMATED FIRMWARE SETTINGS
VERIFICATION

BACKGROUND

A data center is a facility that houses computer systems
and various networking, storage, and other related compo-
nents. Many organizations and businesses operate and main-
tain data centers to provide computing and information
services to support their day-to-day operations. Data centers
may also provide computing services on a permanent or an
as-needed basis to businesses and individuals as a remote
computing service or to provide “platforms as a service” or
“software as a service” (e.g., cloud computing). The com-
puting resources provided by a data center may include
various types of resources, such as data processing
resources, data storage resources, data communication
resources, and the like.

To facilitate increased utilization of data center resources,
virtualization technologies may allow a single physical
computing machine to host one or more instances of virtual
machines (VMs) that appear and operate as independent
computer machines to a remotely connected computer user.
With virtualization, the single physical computing device
can create, maintain, or delete virtual machines in a dynamic
manner. When a customer of a data center requests a new
virtual machine instance, the data center may provide a
virtual machine management service that identifies a “slot”
for executing the new instance. Customers may sometimes
request changes to a virtual machine instance or request a
particular configuration. Some changes may require updates
to firmware—a combination of software and hardware such
as a hardware device with data stored in read-only memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers may be
reused to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

FIG. 1is a diagram illustrating a mechanism for providing
a firmware settings framework in accordance with the pres-
ent disclosure;

FIG. 2 illustrates an example computer system that may
be used in some embodiments;

FIG. 3 is a diagram illustrating computing firmware
groupings;

FIG. 4 is a diagram illustrating a mechanism for providing
a firmware settings framework in accordance with the pres-
ent disclosure;

FIG. 5 is a flowchart depicting an example procedure for
providing a firmware settings framework in accordance with
the present disclosure;

FIG. 6 is a flowchart depicting an example procedure for
providing a firmware settings framework in accordance with
the present disclosure; and

FIG. 7 is a flowchart depicting an example procedure for
providing a firmware settings framework in accordance with
the present disclosure.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for providing a service that implements one or more
levels of abstraction for updating various computer firmware
settings. Many computer settings can only be altered, for

10

15

20

25

30

35

40

45

50

55

60

65

2

example, via firmware or Basic Input/Output System (BIOS)
updates that may be vendor specific. One issue that may
arise when altering such settings is during testing of new
hardware or when operating hardware in a computing envi-
ronment such as a data center. In the examples described
herein, a data center is one example environment in which
the described embodiments can be implemented. However,
the described concepts can apply generally to other com-
puting environments, for example across multiple data cen-
ters or locations.

Because of the limitations typically involved with modi-
fying firmware settings, it can be difficult to automate the
testing and verification of settings that are controlled by
firmware such as, for example, Non-Uniform Memory
Access (NUMA), memory speed, power settings, and the
like. It can also be difficult to automate and manage the
configuration of such firmware settings in a production
capacity.

The present disclosure describes a firmware abstraction
mechanism for a service that provides one or more levels of
abstraction for changing various firmware settings. Such a
firmware abstraction mechanism can include the creation
and management of workflows for firmware settings by
querying and changing firmware settings, mapping the set-
tings to specific hardware, changing and managing the
settings in a controlled manner, and removing/bringing
affected devices back into service. The firmware abstraction
mechanism can be used as part of a test workflow for
verifying performance and operation of different firmware
configurations. The firmware abstraction mechanism can
also be used as part of a production workflow to configure
capacity at runtime so that various system configurations
with different firmware settings can be available for cus-
tomers.

FIG. 1 is a diagram illustrating a computing environment
100 including a mechanism for providing a firmware
abstraction framework in accordance with the present dis-
closure. In the present disclosure, a firmware abstraction
mechanism may also be referred to as a firmware abstraction
framework or a firmware settings framework. The terms
may be used interchangeably. Referring to FIG. 1, comput-
ing environment 100 may include virtual machine instances
110 and 120 that may execute, for example, on one or more
server computers 130 and 140. It will be appreciated that
some embodiments may involve additional virtual machine
instances that may be instantiated on additional server
computers in computing environment 100.

FIG. 1 also illustrates a public network 150 that may
include one or more computing devices such as computers
160 and 170. According to one embodiment, virtual machine
instance 110 may be configured to provide computing ser-
vices to a computer user (not shown) of public network 150
via a gateway 190 and computers 160 and 170. For example,
virtual machine instance 110 may provide a set of remote
access enterprise applications to a group of users who may,
for example, be employees of an enterprise customer.

A user, administrator, service or any computing resource
in computing environment 100 may send a request to a
firmware settings framework 180 for a resource instance
with a particular firmware setting. In one embodiment,
firmware settings framework 180 may maintain a record of
groupings of computing resources that have been deter-
mined to be capable of meeting a predetermined baseline
firmware configuration. By maintaining such groupings,
computing firmware settings framework 180 can efficiently
identify and allocate computing resources for responding to
firmware setting requests. Such settings may be requested

US 9,471,784 Bl

3

directly by a customer of the data center, by an administrator
of the data center, a service or any computing resource
within the data center such as server 130. Server 130 may
also send a request on behalf of itself, or on behalf of other
servers.

In response to the request for firmware settings, firmware
settings framework 180 may access a list of available
firmware baseline configurations. As used herein, firmware
can be any combination of software and hardware, typically
programs or data written in permanent storage (e.g., read-
only memory (ROM), programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), NAND or other non-volatile storage on a
device). The list of available firmware baseline configura-
tions may be prioritized based on factors such as cost and
policy information. Firmware settings framework 180 may
also access information describing verification results and
verification schedules. Firmware settings framework 180
may send information regarding the available firmware
baseline configurations to the requestor.

In some embodiments, firmware settings framework 180
may receive a request for one or more firmware capacity
groupings based on a new firmware setting. In response,
firmware settings framework 180 may determine which, if
any, of the plurality of available firmware capacity group-
ings that may already be able to provide the new firmware
setting. Firmware settings framework 180 may determine
that such a grouping already exists by reviewing the list of
available firmware baseline configurations and requirements
for verification of the new firmware setting. If such a
grouping does not exist, then firmware settings framework
180 may perform, or cause performance, of one or more
verification tasks to determine that the new firmware setting
meets established performance and capacity requirements.
Once verification has been performed, a new grouping can
be formed consisting of resources that have incorporated the
new firmware setting. If such a grouping already exists, then
firmware settings framework 180 may send information to
the requestor regarding the existing grouping and the mem-
bers of the group.

In some embodiments, firmware settings framework 180
may send information regarding requirements for verifica-
tion of the new firmware setting to a resource such as server
computer 130 if the new firmware setting is to be incorpo-
rated in the resource. The resource may perform verification
tasks and send the results of the verification tasks to firm-
ware settings framework 180. Firmware settings framework
180 may then approve or disapprove the results and create
a firmware capacity grouping. As an example, a server
computer may be configured to support VM instances with
a baseline configuration that includes a specified firmware
setting. The server computer will not be able to host VM
instances with a different firmware setting requirement
unless the server computer’s firmware settings have been
changed. Once the server computer has been changed and
the update has been verified, firmware settings framework
180 can determine that the server computer can now support
VM instances with the updated setting requirement. Firm-
ware settings framework 180 can then include the server
computer in a capacity pool of server computers that can
support such VM instances.

As described above, firmware is typically specific to
vendor implementation. One of the issues raised by settings
that are firmware dependent is the testing of computing
configurations. To thoroughly test computing configura-
tions, it is desirable to iterate test conditions through the
various possible firmware settings. Firmware settings may

10

15

20

25

30

35

40

45

50

55

60

65

4

require vendor specific procedures or necessitate the reboot
of hardware to a particular execution environment. After
such changes, another reboot may be required. Some devices
may provide a number of firmware customization settings
that may be accessed through various means. Some
examples of firmware controlled settings include the
enabling of clock frequency scaling (e.g., Intel Turbo),
symmetric multithreading (e.g., Intel hyper-threading) and
NUMA settings.

In a data center environment, it is desirable to test
computing configurations by iterating through various set-
tings—including firmware settings—in a controlled way to
determine optimal settings for a particular workload or VM
instance type. When new hardware configurations are added
in response to requests for unique firmware settings, fleet
fragmentation and proliferation can result. By testing com-
puting configurations, it is possible to achieve greater inte-
gration of the computing configuration into the data center’s
products and services. And by testing a variety of configu-
rations, a given set of hardware may be determined to be
able to support a number of different firmware settings.
Pools or groupings of computing resources can be identified
based on such capabilities and maintained based on fre-
quently used settings and configurations.

In some cases a customer may request a particular setting
that requires a change to a firmware setting that is not
currently provided by the data center. A service in the data
center may be implemented in one or more computing
devices. The service may be configured to determine a
suitable computing device can potentially accommodate the
setting, initiate a workflow to update and validate the
particular setting, and report that the update has been incor-
porated when the computing device is ready to provide the
particular setting to the customer. The particular setting may
also be made available to other customers who may request
similar settings.

In various embodiments, a firmware abstraction frame-
work such as firmware settings framework 180 of FIG. 1
may be implemented in one or more computing devices and
configured to receive requests for computing settings and
determine one or more firmware settings that will incorpo-
rate the requested computing setting. For example, the
firmware abstraction framework may map requests for com-
puting settings to actual settings that can be implemented in
firmware settings (e.g., NUMA to “interleaved memory™).

The firmware abstraction framework may create work-
flows to update and validate specific settings on specific
resources (i.e., servers). The firmware abstraction frame-
work may identify one or more resources that already
includes the requested setting or identify one or more
settings that can be updated to provide the requested setting.
For example, the firmware abstraction framework may track
pools of resources (i.e., servers) that can support a given
settings configuration. The firmware abstraction framework
may create also workflows to update and validate specific
settings on specific computing resources.

The firmware abstraction framework may also be config-
ured to optimize the placement for requested resources that
have particular firmware settings requirements based on
various factors such as minimization of disruption to exist-
ing services. The firmware framework may thus manage
data center workflows to optimize the firmware updates and
computing resource tracking capabilities.

Management of the firmware setting is also useful for
managing devices that are associated with firmware updates
such as flash storage devices. For example, flash devices
have variations in write endurance and a firmware frame-

US 9,471,784 Bl

5

work can track and manage the number of write/erase cycles
on the devices and limit or throttle the number of times
firmware is updated on a particular device.

Firmware settings can be an important aspect of correct
operation of the operating system, and an incorrect or
incompatible setting can disable a computing resource or
otherwise render it unusable. Furthermore, firmware settings
have the potential to cause physical damage to devices or to
affect hardware reliability because the firmware settings can
set controls for hardware such as clock rate and thermal
throttling. The firmware abstraction framework can be con-
figured to manage such hardware settings so that failure can
be minimized. For example, the firmware abstraction frame-
work can determine how often to perform firmware updates
on a given device and the conditions for testing the firmware
settings. The firmware abstraction framework can also look
for settings that may result in various blacklist behaviors that
are to be avoided by the managed devices.

As discussed above, firmware is often vendor specific,
and in one embodiment the firmware abstraction framework
can implement an application programming interface (API)
to provide an interface by which vendor specific settings can
be translated or “mapped” into a set of abstracted settings
that are not vendor specific. In this way, customers need only
identify the abstracted firmware settings and need not be
concerned with hardware specific settings that may vary
across vendors. Such an API can implement interfaces for
common denominators across a data center’s computing
resources in a way that provides commonality and long-term
compatibility for firmware settings regardless of the data
center’s hardware resources at any given time.

In some embodiments, the firmware abstraction frame-
work may be configured to interact with a test framework
that implements a mechanism for tests and verification of
assets in a data center. For example, when a request for a
computing setting is received and it is determined that the
computing setting requires firmware changes that have not
been previously verified, the firmware abstraction frame-
work can identify a set of firmware settings that needs to be
tested and verified to confirm that the settings meet data
center criteria. The firmware abstraction framework can also
determine which of the settings are best suited to comply
with the requested computing setting. The firmware settings
to be tested can be sent to a test service to carry out the tests.

In some embodiments, the firmware abstraction frame-
work may be configured to include an expert system and a
knowledge base to provide a decision-making capability
regarding the search and selection of firmware settings. The
expert system can consider factors such as system through-
put, processor utilization, and network bandwidth. Further-
more, the firmware abstraction framework may employ one
or more fitness functions to determine how close a given
configuration is to achieving one or more system criteria. A
configuration management mechanism may be used to per-
form permutation testing and determine optimal search
settings. In one embodiment, a genetic algorithm may be
used as a search heuristic to efficiently determine searches
for satisfactory firmware settings. In other embodiments,
other search functions or combinations of search functions
can be used, such as a simulated annealing algorithm or a
Hidden Markov Model algorithm.

In one example use case, a customer may request options
for implementing a computing resource. In response, the
firmware abstraction framework may determine if the data
center has the capacity to fulfill the request and select a
suitable computing device. The firmware abstraction frame-
work may take the computing device out of service, update

20

25

40

45

55

6

the firmware and reboot the computing device. The firmware
abstraction framework may then perform verification of the
changes, and update configuration information to track the
new configuration.

The firmware abstraction framework can include a work-
flow management component that may be configured to
select candidate computing devices or resources and to
move VM instances between computing devices as neces-
sary.

In some embodiments, the firmware abstraction frame-
work can also include a billing component. In one embodi-
ment, a pricing structure can be determined based on the
settings selected by a customer. For example, a baseline
price can be charged for standard computing configurations,
and a premium price may be charged for special configu-
rations that are not supported by a standard resource pool or
an existing resource and otherwise result in special provi-
sioning to accommodate the request. For example, the
dedication of a computing device with a unique configura-
tion may result in an underutilization of the device, espe-
cially if additional VM instances cannot be hosted on the
device. The premium price can include a set fee or an hourly
premium or a combination of the two.

Thus in various embodiments the firmware abstraction
framework may be used to update and manage firmware
changes across the entire fleet of computing resources in a
data center.

Various aspects of the disclosure are now described with
regard to certain examples and embodiments, which are
intended to illustrate but not to limit the disclosure. It should
be appreciated that the subject matter presented herein may
be implemented as a computer process, a computer-con-
trolled apparatus, a computing system, or an article of
manufacture, such as a computer-readable storage medium.
While the subject matter described herein is presented in the
general context of program modules that execute on one or
more computing devices, those skilled in the art will rec-
ognize that other implementations may be performed in
combination with other types of program modules. Gener-
ally, program modules include routines, programs, compo-
nents, data structures, and other types of structures that
perform particular tasks or implement particular abstract
data types.

Those skilled in the art will also appreciate that the subject
matter described herein may be practiced on or in conjunc-
tion with other computer system configurations beyond
those described herein, including multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers, handheld com-
puters, personal digital assistants, e-readers, cellular tele-
phone devices, special-purposed hardware devices, network
appliances, and the like. The embodiments described herein
may also be practiced in distributed computing environ-
ments, where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located in both local and remote memory storage
devices.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
that show, by way of illustration, specific embodiments or
examples. The drawings herein are not drawn to scale. Like
numerals represent like elements throughout the several
figures.

FIG. 2 illustrates an example computing environment in
which the embodiments described herein may be imple-
mented. FIG. 2 is a diagram schematically illustrating an

US 9,471,784 Bl

7

example of a data center 210 that can provide computing
resources to users 200a and 2005 (which may be referred
herein singularly as “auser 200” or in the plural as “the users
200”) via user computers 202a and 2026 (which may be
referred herein singularly as “a computer 202” or in the
plural as “the computers 202”) via a communications net-
work 230. Data center 210 may, for example, correspond to
computing environment 100 in FIG. 1.

Data center 210 may be configured to provide computing
resources for executing applications on a permanent or an
as-needed basis. The computing resources provided by data
center 210 may include various types of resources, such as
data processing resources, data storage resources, data com-
munication resources, and the like. Each type of computing
resource may be general-purpose or may be available in a
number of specific configurations. For example, data pro-
cessing resources may be available as virtual machine
instances. The instances may be configured to execute
applications, including Web servers, application servers,
media servers, database servers, and the like. Data storage
resources may include file storage devices, block storage
devices, and the like.

Each type or configuration of computing resource may be
available in different sizes, such as large resources—con-
sisting of many processor cores, large amounts of memory,
and/or large storage capacity—and small resources—con-
sisting of fewer processor cores, smaller amounts of
memory, and/or smaller storage capacity. Customers may
choose to allocate a number of small processing resources as
Web servers and/or one large processing resource as a
database server, for example.

Data center 210 may include servers 216 (which may be
referred herein singularly as “a server 216” or in the plural
as “the servers 216”) that provide computing resources
available as virtual machine instances 218 (which may be
referred herein singularly as “a virtual machine instance
218” or in the plural as “the virtual machine instances 218”).
The virtual machine instances 218 may be configured to
execute applications, including Web servers, application
servers, media servers, database servers, and the like. Other
resources that may be provided include data storage
resources (not shown), and may include hard drives, solid
state storage drives or other storage devices, and the like.

The availability of virtualization technologies for com-
puting hardware has provided benefits for providing large
scale computing resources for customers and allowing com-
puting resources to be efficiently and securely shared
between multiple customers. For example, virtualization
technologies such as those provided by VM Ware or other
virtualization systems may allow a physical computing
device to be shared among multiple users by providing each
user with one or more virtual machine instances hosted by
the physical computing device. A virtual machine instance
may be a software emulation of a particular physical com-
puting system that acts as a distinct logical computing
system. Such a virtual machine instance provides isolation
among multiple operating systems sharing a given physical
computing resource. Furthermore, some virtualization tech-
nologies may provide virtual resources that span one or
more physical resources, such as a single virtual machine
instance with multiple virtual processors that spans multiple
distinct physical computing systems.

Referring to FIG. 2, communications network 230 may,
for example, be a publicly accessible network of linked
networks and possibly operated by various distinct parties,
such as the Internet. In other embodiments, communications
network 230 may be a private network, such as, for example,

10

15

20

25

30

35

40

45

50

55

60

65

8

a corporate or university network that is wholly or partially
inaccessible to non-privileged users. In still other embodi-
ments, communications network 230 may include one or
more private networks with access to and/or from the
Internet.

Communication network 230 may provide access to com-
puters 202. User computers 202 may be computers utilized
by customers 200 or other customers of data center 210. For
instance, user computer 202a or 2025 may be a server, a
desktop or laptop personal computer, a tablet computer, a
wireless telephone, a personal digital assistant (PDA), an
e-book reader, a game console, a set-top box, or any other
computing device capable of accessing data center 210. User
computer 202a or 20256 may connect directly to the Internet
(e.g., via a cable modem or a Digital Subscriber Line (DSL).
Although only two user computers 202a and 2025 are
depicted, it should be appreciated that there may be multiple
user computers.

User computers 202 may also be utilized to configure
aspects of the computing resources provided by data center
210. In this regard, data center 210 might provide a Web
interface through which aspects of its operation may be
configured through the use of a Web browser application
program executing on user computer 202. Alternatively, a
stand-alone application program executing on user computer
202 might access an application programming interface
(API) exposed by data center 210 for performing the con-
figuration operations. Other mechanisms for configuring the
operation of the data center 210, including deploying
updates to an application, might also be utilized.

Servers 216 shown in FIG. 2 may be standard servers
configured appropriately for providing the computing
resources described above and may provide computing
resources for executing one or more applications. In one
embodiment, the computing resources may be virtual
machine instances 218. In the example of virtual machine
instances, each of the servers 216 may be configured to
execute an instance manager 220a or 2205 (which may be
referred herein singularly as “an instance manager 220 or
in the plural as “the instance managers 220) capable of
executing the virtual machine instances 218. The instance
managers 220 may be a virtual machine monitor (VMM) or
another type of program configured to enable the execution
of virtual machine instances 218 on server 216, for example.
As discussed above, each of the virtual machine instances
218 may be configured to execute all or a portion of an
application.

It should be appreciated that although the embodiments
disclosed above discuss the context of virtual machine
instances, other types of implementations can be utilized
with the concepts and technologies disclosed herein. For
example, the embodiments disclosed herein might also be
utilized with computing systems that do not utilize virtual
machine instances.

In the example data center 210 shown in FIG. 2, a router
214 may be utilized to interconnect the servers 216a and
216b. Router 214 may also be connected to gateway 240,
which is connected to communications network 230. Router
214 may manage communications within networks in data
center 210, for example by forwarding packets or other data
communications as appropriate based on characteristics of
such communications (e.g., header information including
source and/or destination addresses, protocol identifiers,
etc.) and/or the characteristics of the private network (e.g.,
routes based on network topology, etc.). It will be appreci-
ated that, for the sake of simplicity, various aspects of the
computing systems and other devices of this example are

US 9,471,784 Bl

9

illustrated without showing certain conventional details.
Additional computing systems and other devices may be
interconnected in other embodiments and may be intercon-
nected in different ways.

It should be appreciated that the network topology illus-
trated in FIG. 2 has been greatly simplified and that many
more networks and networking devices may be utilized to
interconnect the various computing systems disclosed
herein. These network topologies and devices should be
apparent to those skilled in the art.

It should also be appreciated that data center 210
described in FIG. 2 is merely illustrative and that other
implementations might be utilized. Additionally, it should be
appreciated that the functionality disclosed herein might be
implemented in software, hardware, or a combination of
software and hardware. Other implementations should be
apparent to those skilled in the art. It should also be
appreciated that a server, gateway, or other computing
device may comprise any combination of hardware or
software that can interact and perform the described types of
functionality, including without limitation desktop or other
computers, database servers, network storage devices and
other network devices, PDAs, tablets, cellphones, wireless
phones, pagers, electronic organizers, Internet appliances,
television-based systems (e.g., using set top boxes and/or
personal/digital video recorders), and various other con-
sumer products that include appropriate communication
capabilities. In addition, the functionality provided by the
illustrated modules may in some embodiments be combined
in fewer modules or distributed in additional modules.
Similarly, in some embodiments the functionality of some of
the illustrated modules may not be provided and/or other
additional functionality may be available.

The capacity of purchased computing resources provided
by data center 210 can be scaled in response to demand. In
this regard, scaling refers to the process of instantiating
(which may also be referred to herein as “launching” or
“creating”) or terminating (which may also be referred to
herein as “de-scaling™) instances of computing resources in
response to demand. In this manner, the capacity of
resources purchased by a customer of data center 210 can be
scaled on-demand.

Auto scaling is one mechanism for scaling computing
resources in response to increases or lulls in demand for the
resources. Auto scaling allows customers of data center 210
to configure data center 210 to scale their purchased com-
puting resources according to conditions defined by the
customer. For instance, rules may be defined for scaling up
capacity in a particular manner in response to the occurrence
of specified conditions, such as a spike in demand. Similarly,
rules might also be defined to scale down capacity in a
particular manner in response to the occurrence of other
conditions, such as a lull in demand. The mechanisms
disclosed herein for launching virtual machine instances
might be utilized when instances are manually launched by
a customer or when instances are launched by an auto
scaling component in data center 210.

Data center 210 may also be configured with a deploy-
ment component to assist customers in the deployment of
new instances of computing resources. The deployment
component may receive a configuration from a customer that
includes data describing how new instances should be
configured. For example, the configuration might specify
one or more applications or software components that
should be installed in new instances, provide scripts and/or
other types of code to be executed in new instances, and
other types of information. The deployment component

10

25

35

40

45

50

55

10

utilizes the customer-provided configuration to launch and
configure customer workloads on computing resources.

In computing environments such as those described
herein, firmware is generally program code and data stored
in persistent memory devices such as ROM, EPROM, or
flash memory. Changing the firmware of a device can be a
fairly infrequent occurrence in most cases. Firmware such as
the ROM BIOS of a computer typically configure functions
of'a device’s hardware. Although firmware configuration has
important ramifications for the system’s operating system
and thus the computer system’s operation, most systems
lack a mechanism for updating and managing firmware in an
automated and organized way. Firmware is typically updated
manually using a utility program, usually during the bootup
sequence. Some firmware in standalone devices rarely gets
updated.

Computing devices, in particular in a data center scenario,
may include a wide variety of hardware and software
options that can be configured by firmware. A data center
must track and manage the configurations, and verify com-
patibility between the different configurations. In an
embodiment, an automated firmware abstraction framework
may include one or more software layers for abstracting
vendor specific firmware settings. In many computers, oper-
ating systems will run in conjunction with services provided
by the system BIOS, which interfaces with the computing
hardware. In various embodiments, an automated firmware
abstraction framework may include one or more software
layers that interacts with the system BIOS and other firm-
ware utility programs using a standard interface. In an
embodiment, the layers of the automated firmware abstrac-
tion framework provides an abstraction model to the systems
that run on it by providing a set of services and functions that
the executing systems can use. In this way, the executing
systems need not deal with the specifics of the firmware but
simply interact with the abstraction model.

By using the standard interfaces provided by the auto-
mated firmware abstraction framework, it is possible to
make changes to the underlying computing devices and their
firmware without updating software at higher levels. In this
way, compatibility can be maintained across services pro-
vided in a data center while vendor specific changes are
incorporated.

Some of the parameters that may be configured by an
automated firmware abstraction framework may include, but
are not limited to, memory interleaving, processor clock
frequency scaling, NIC parameters, hard drive parameters,
access modes, ports, and the like.

FIG. 3 illustrates one embodiment in which computing
resources are managed using a firmware settings framework.
FIG. 3 includes firmware configuration groupings 302, 304,
306, and 308 that each identify with one or more computing
resources that meet or exceed the respective requirements
for the respective firmware settings. In the figure, firmware
configuration grouping 302 includes computing resources A,
B, G, and H. Firmware configuration grouping 304 includes
computing resources A, B, C, D, E, F, G, and H. Firmware
configuration grouping 306 includes computing resources A
and B. Firmware configuration grouping 308 includes com-
puting resources G, H, M, N, P, and T. Each of the firmware
configuration groupings 302, 304, 306, and 308 may be
associated with respective minimum firmware configura-
tions 312, 314, 316, and 318. As an example, firmware
configuration 312 may require computing resources with a
specified firmware setting for a particular processor. In one
embodiment, membership in the firmware configuration
groupings 302, 304, 306, and 308 may change as computing

US 9,471,784 Bl

11

resources join new firmware configuration groupings or
leave existing firmware configuration groupings.

FIG. 4 illustrates an example computing environment in
which the embodiments described herein may be imple-
mented. Referring to the figure, server computers 402, 410,
420, and 430 may communicate with a firmware settings
framework 404 for access to computing firmware grouping
information. Firmware settings framework 404 may in some
embodiments correspond to firmware settings framework
180 as depicted in FIG. 1. Server computer 402 may host
virtual machine instances 406 and 408. Similarly, server
computer 410 may host virtual machine instance 412; and
server computer 420 may host virtual machine instances
422, 424, and 426. Server computer 430 may be configured
to provide other services and may not be executing a virtual
machine instance.

Server computer 402 may send a request for an updated
computing configuration to firmware settings framework
404. Firmware settings framework 404 may send informa-
tion to server computer 402 indicating applicable computing
firmware groupings, if any exist. If they do not exist,
firmware settings framework 404 may identity requirements
for establishing a grouping of server computers that can
support the updated computing configuration. For example,
requirements may include device hardware and any software
or firmware that needs to be installed, or execution of a test
to verify that a virtual computing instance of a particular
type can function with updated computing configuration.
The information may also indicate when evaluation tasks
can be performed. For example, the information may include
an evaluation schedule that minimizes potential disruptions
to existing services being provided to customers.

In one embodiment, the information describing the com-
puting firmware groupings may be prioritized based on one
or more criteria. For example, the computing firmware
groupings may be prioritized based on costs associated with
providing the computing firmware groupings, or based on
policies such as which computing firmware groupings have
the highest demand.

In some embodiments, the request for the updated com-
puting configuration may be sent to firmware settings frame-
work 404 from server computer 402 on behalf of one of the
other server computers 410, 420, and 430. In other embodi-
ments, a third party such as a service executing on one of the
server computers 402, 410, 420, and 430, or executing on
another computing device, may send the request on behalf of
one or more of the server computers 402, 410, 420, and 430.

Firmware settings framework 404 may cause the conduct
of an evaluation and determine which, if any, of the require-
ments that can be met or exceeded by existing server
computers. For example, server computer 402 may be
determined to be a candidate for incorporating the comput-
ing configuration and tasked with conducting an evaluation
and determine which, if any, of the requirements that it can
meet or exceed. Server computer 402 can optionally perform
verification tasks that it can perform without jeopardizing its
ability to continue uninterrupted hosting of its occupant VM
instances since server computer 402 may already be a
member of one or more computing firmware groupings and
may currently host one or more virtual machines. Server
computer 402 may also obtain additional details for verifi-
cation from firmware settings framework 404 or from some
other source indicated by firmware settings framework 180
in FIG. 1.

Server computer 402 may optionally send a request to join
one or more computing firmware groupings to firmware
settings framework 404. Server computer 402 may option-

25

40

45

50

12

ally include the cost of verifying server computer 402’s
ability to join each proposed computing firmware grouping.
Firmware settings framework 404 may then evaluate the
request and determine whether to allow server computer 402
to proceed. Firmware settings framework 404 can make this
determination using a number of factors. For example,
firmware settings framework 404 may assess global consid-
erations such as the number of other server computers
making requests and the number of available computing
firmware groupings that may be rendered unavailable while
server computer 402 as well as other server computers
perform verification tests.

Firmware settings framework 404 may determine if the
proposed computing firmware groupings can accept addi-
tional members, if any potential disruptions to existing
services are acceptable, and make other determinations as
necessary. Based on the determinations, firmware settings
framework 404 may send an indication to proceed to server
computer 402. Server computer 402, in response to receiv-
ing the indication to proceed, may then execute necessary
verification tasks. The verification tasks may include, but are
not limited to, running software tests, running VM instances
or other workloads that simulate customer use cases, and
gathering the results of the tests and use cases. Once the
verification tasks have been completed, server computer 402
may send the results to firmware settings framework 404 for
review of the results and determination as to which com-
puting firmware groupings that server computer 402 will be
allowed to join.

Firmware settings framework 404 may analyze the infor-
mation provided by server computer 402 including the test
results. Based on the received information and additional
factors as necessary, the firmware settings framework 404
may approve or disapprove admission to one or more of the
requested computing firmware groupings. Firmware settings
framework 404 may, for example, consider admission
approval/disapproval decisions based on the computing
firmware groupings that still have room for additional server
computers, availability objectives for various computing
resources, and server administration policies. After sending
the approval/disapproval information by firmware settings
framework 404, server computer 402 may be designated as
being associated with each of the approved computing
firmware groupings. Firmware settings framework 404 may
optionally disassociate server computer 402 from some
computing firmware groupings. For example, firmware set-
tings framework 404 may have implemented policies to
remove server computers from less valuable/rare pools or
overpopulated pools.

By using a predetermined set of baseline configurations
and established tests for verifying compliance with the
configurations, computing firmware groupings can be effi-
ciently maintained and newly added functionality can be
tracked by adding computing firmware groupings as needed.
Additionally, instead of taking server computers offline and
temporarily out of a computing firmware grouping to verify
added functionality, verification tests can be structured so
that server computers can run the tests while they are hosting
virtual services and without disrupting the hosted services.

In some embodiments, firmware settings framework 404
can use policies and evaluation criteria to drive the com-
puting firmware grouping population to support certain
computing resource management objectives. In one embodi-
ment, computing firmware groupings can be assigned dif-
ferent weights to influence requests submitted by server
computers. For example, weights can be assigned so that
computing firmware groupings are populated in a more cost

US 9,471,784 Bl

13

effective manner according to administrative policies or to
evacuate server computers that have been identified for
eventual removal from service. For instance, older servers
that are scheduled to be lease-returned can routinely be
denied permission to join computing firmware groupings
until the older servers eventually become unoccupied, at
which point they can be lease-returned.

In some embodiments, computing firmware groupings
can be managed so that various availability objectives can be
achieved. For example, weights can be assigned to comput-
ing firmware groupings so that computing firmware group-
ing availability can provide that at any point in time, an
attempt to find a computing firmware grouping that provides
functionality set X has a Y % chance of succeeding. Data for
determining the values of X and Y can be based on a
predetermined policy. For example, one such policy may be
that a predetermined amount of reserve instance capacity for
a given set of attributes should be maintained. Other
examples include ensuring that certain customer usage pat-
terns can be supported. For example, one such usage pattern
can be for each capacity pool containing instances owned by
entity Z, the computing firmware groupings is managed such
that an additional Q % of instances can be accommodated.
As another example, firmware settings framework 404 can
determine that the available servers in a certain computing
firmware grouping are too low and should be increased. In
other embodiments, historical data can be used to determine
a computing firmware grouping management policy.

Firmware settings framework 404 may reside on one or
more server computers or other computing resources in a
data center. Firmware settings framework 404 may in some
embodiments be managed by a VMM or other management
software executing in the data center. Firmware settings
framework 404 may also execute on one or more virtual
machines.

FIG. 5 illustrates an example operational procedure for
managing computing resources in a data center using a
firmware settings framework. In an embodiment, a firmware
settings framework can correspond to firmware settings
framework 404 in FIG. 4 or firmware settings framework
180 in FIG. 1.

Referring to FIG. 5, operation 500 begins the operational
procedure. Operation 500 may be followed by operation
502. Operation 502 illustrates receiving a request for a
computing resource with a desired computing attribute. In
an embodiment, the request may be received in a computing
environment comprising a plurality of computing devices
providing computing resources.

Operation 502 may be followed by operation 504. Opera-
tion 504 illustrates identifying at least one of the plurality of
computing devices to provide the hardware-specific firm-
ware settings. The requested computing resource may be
deployed on the identified computing device.

Operation 504 may be followed by operation 506. Opera-
tion 506 illustrates translating the requested computing
attribute to corresponding hardware-specific firmware set-
tings on the identified computing device. In some embodi-
ments, the translating may be performed based on predeter-
mined relationships between hardware-specific firmware
settings and abstracted firmware settings that correspond to
the hardware-specific firmware settings.

Operation 506 may be followed by operation 508. If the
firmware settings are not implemented on the identified
computing device, then operation 508 may be followed by
operation 510. Operation 510 illustrates implementing and
verifying the hardware-specific firmware settings on the
identified computing device. For example, the hardware-

25

30

35

40

45

50

55

60

65

14

specific firmware settings can be verified on the identified
computing device and the requested computing resource can
be provided on the identified computing device. However, it
is possible that the identified computing device with the
hardware-specific firmware settings does not meet appli-
cable requirements and the requestor may be informed that
the desired computing attribute cannot be provided. In some
embodiments, additional candidate computing devices may
be identified and verified to select a device that can satisfy
the applicable requirements.

If the firmware settings are implemented on the identified
computing device, then operation 508 may be followed by
operation 512. Operation 512 illustrates providing the
requested computing resource on the identified computing
device. Operation 512 may be followed by operation 502.

FIG. 6 illustrates an example operational procedure for
managing computing resources in a data center using a
firmware settings framework. In an embodiment, a firmware
settings framework can correspond to firmware settings
framework 404 in FIG. 4 or firmware settings framework
180 in FIG. 1.

Referring to FIG. 6, operation 600 begins the operational
procedure. Operation 600 may be followed by operation
602. Operation 602 illustrates maintaining mappings
between a plurality of computing settings of a plurality of
computing devices in a computing environment and corre-
sponding firmware settings of the one or more computing
devices in the computing environment. In one embodiment,
the mappings may be representative of a relationship
between hardware-specific firmware settings and abstracted
firmware settings that are independent of the hardware-
specific firmware settings. For example, the abstracted firm-
ware settings may provide at least a degree of independence
from specific hardware implementations by providing stable
abstracted parameters that can be translated to a hardware-
specific firmware settings without having to consider the
details of the hardware-specific firmware settings.

Operation 602 may be followed by operation 604. Opera-
tion 604 illustrates receiving a request for a computing
attribute related to one of the plurality of computing settings.

Operation 604 may be followed by operation 606. If it is
determined that none of the mappings corresponds to the
requested computing attribute, then operation 606 may be
followed by operation 608. Operation 608 illustrates initi-
ating a remediation process. In one embodiment, the reme-
diation process can include causing execution of a process to
create and verify a new mapping between the computing
setting and one or more corresponding firmware settings.
For example, the computing setting can be verified on a set
of computing resources with a corresponding firmware
setting and a new mapping can be added. However, it is
possible that the requested updated configuration does not
meet applicable requirements and the mapping can indicate
that the requested updated configuration is not valid.

If a mapping does exist, then operation 606 may be
followed by operation 610. Operation 610 illustrates select-
ing one of the mappings to provide the requested computing
attribute. Operation 610 may be followed by operation 602.

FIG. 7 illustrates an example operational procedure for
managing computing resources in a data center using a
firmware settings framework. In an embodiment, a firmware
settings framework can correspond to firmware settings
framework 404 in FIG. 4 or firmware settings framework
180 in FIG. 1.

Referring to FIG. 7, operation 700 begins the operational
procedure. Operation 700 may be followed by operation
702. Operation 702 illustrates forming groupings of com-

US 9,471,784 Bl

15

puting devices in a computing environment comprising a
plurality of computing devices providing computing
resources. In one embodiment, the groupings may have
common computing attributes corresponding to one or more
firmware settings of an abstraction firmware framework.
Additionally, the abstraction firmware framework may rep-
resent relationships between hardware-specific firmware set-
tings and abstracted firmware settings that are independent
of the hardware-specific firmware settings.

Operation 702 may be followed by operation 704. Opera-
tion 704 illustrates receiving a request for a computing
attribute. Operation 704 may be followed by operation 706.
Operation 706 illustrates identifying at least one of the
firmware settings that correspond to the requested comput-
ing attribute.

Operation 706 may be followed by operation 708. If it is
determined that none of the groupings can support the
identified at least one firmware setting, then operation 708
may be followed by operation 710. Operation 708 illustrates
creating a new grouping when it is determined that none of
the groupings can support the identified at least one firm-
ware setting.

If a grouping can support the identified at least one
firmware setting, then operation 708 may be followed by
operation 712. Operation 712 illustrates providing the
requested computing attribute. For example, one of the
computing devices in the grouping that can support the
firmware setting can be selected to provide the requested
computing attribute. Operation 712 may be followed by
operation 704.

Each of the processes, methods, and algorithms described
in the preceding sections may be embodied in, and fully or
partially automated by, code modules executed by one or
more computers or computer processors. The code modules
may be stored on any type of non-transitory computer-
readable medium or computer storage device, such as hard
drives, solid state memory, optical disc, and/or the like. The
processes and algorithms may be implemented partially or
wholly in application-specific circuitry. The results of the
disclosed processes and process steps may be stored, per-
sistently or otherwise, in any type of non-transitory com-
puter storage such as, e.g., volatile or non-volatile storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and subcombi-
nations are intended to fall within the scope of this disclo-
sure. In addition, certain method or process blocks may be
omitted in some implementations. The methods and pro-
cesses described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be
performed in other sequences that are appropriate. For
example, described blocks or states may be performed in an
order other than that specifically disclosed, or multiple
blocks or states may be combined in a single block or state.
The example blocks or states may be performed in serial, in
parallel, or in some other manner. Blocks or states may be
added to or removed from the disclosed example embodi-
ments. The example systems and components described
herein may be configured differently than described. For
example, elements may be added to, removed from, or
rearranged compared to the disclosed example embodi-
ments.

It will also be appreciated that various items are illustrated
as being stored in memory or on storage while being used,
and that these items or portions of thereof may be transferred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in

15

25

30

40

45

50

16

other embodiments some or all of the software modules
and/or systems may execute in memory on another device
and communicate with the illustrated computing systems via
inter-computer communication. Furthermore, in some
embodiments, some or all of the systems and/or modules
may be implemented or provided in other ways, such as at
least partially in firmware and/or hardware, including, but
not limited to, one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
(e.g., by executing appropriate instructions, and including
microcontrollers and/or embedded controllers), field-pro-
grammable gate arrays (FPGAs), complex programmable
logic devices (CPLDs), etc. Some or all of the modules,
systems and data structures may also be stored (e.g., as
software instructions or structured data) on a computer-
readable medium, such as a hard disk, a memory, a network,
or a portable media article to be read by an appropriate drive
or via an appropriate connection. The systems, modules and
data structures may also be transmitted as generated data
signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable
transmission media, including wireless-based and wired/
cable-based media, and may take a variety of forms (e.g., as
part of a single or multiplexed analog signal, or as multiple
discrete digital packets or frames). Such computer program
products may also take other forms in other embodiments.
Accordingly, the present invention may be practiced with
other computer system configurations.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements, and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations, and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list.

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions
disclosed herein. Thus, nothing in the foregoing description
is intended to imply that any particular feature, character-
istic, step, module, or block is necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the inventions disclosed
herein. The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of certain of the inventions
disclosed herein.

What is claimed is:

1. A computing system comprising at least one computing
node and at least one data store in communication with the
at least one computing node, the at least one data store

113

US 9,471,784 Bl

17

having stored therein computer instructions, that upon
execution by the at least one computing node, cause at least:
forming groupings of computing devices in a computing
environment providing computing resources, the
groupings having common computing attributes corre-
sponding to one or more firmware settings of an
abstraction firmware framework, the abstraction firm-
ware framework having an associated interface for
mapping relationships between hardware-specific firm-
ware settings for a plurality of the computing devices
and a plurality of selectable abstracted firmware set-
tings that are translatable to the hardware-specific firm-
ware settings, wherein the abstracted firmware settings
are different from the hardware-specific firmware set-
tings, wherein the abstracted firmware settings are not
vendor-specific, and the abstracted firmware settings
correspond to one or more desired computing attributes

of the plurality of computing devices;

receiving a request for a selected abstracted firmware

setting;

determining which of the groupings can support the

selected abstracted firmware setting; and

creating a new grouping when it is determined that none

of the groupings can support the selected abstracted
firmware setting, wherein the new grouping is based in
part on verification that a computing device in the new
grouping that has implemented the selected abstracted
firmware setting meets or exceeds at least one perfor-
mance criterion.

2. The computing system according to claim 1, wherein
the groupings are based on at least one computing environ-
ment management criterion.

3. The computing system according to claim 2, wherein
the at least one computing environment management crite-
rion is a firmware grouping policy.

4. The computing system according to claim 1, further
comprising implementing an expert system configured to
provide a decision-making capability for forming the group-
ings.

5. A computer-implemented method for managing com-
puting resources, comprising:

maintaining data representative of an abstracted firmware

framework comprising computing firmware settings,
the data determined based on standardized associations
performed using an interface associated with the
abstracted firmware framework, the associations
between hardware-specific firmware settings of a plu-
rality of the computing resources and a plurality of
abstracted firmware settings that are independent of the
hardware-specific firmware settings, wherein the
abstracted firmware settings are different from the
hardware-specific firmware settings, wherein the
abstracted firmware settings are independent of the
hardware-specific settings, and wherein the abstracted
firmware settings correspond to one or more desired
computing attributes;

verifying at least one of the hardware-specific firmware

settings to confirm that it meets predetermined criteria;
receiving a request for a selected abstract firmware set-
ting;

translating the requested selected abstract firmware set-

ting to one or more vendor-specific firmware settings
based on the data; and

identifying a computing resource capable of implement-

ing the one or more vendor-specific firmware settings.

6. The method of claim 5 wherein the hardware specific
firmware settings include at least one of a basic input/output

20

35

40

45

55

60

18

system (BIOS), a non-uniform memory access (NUMA),
processor clock rate, processor clock frequency scaling,
performance state or power state setting.

7. The method of claim 5 further comprising maintaining
groupings of computing resources, each of the groupings
comprising one or more computing resources that have a
common set of computing firmware settings that have been
incorporated and verified.

8. The method of claim 5 wherein the predetermined
criteria includes a data center capacity management policy.

9. The method of claim 7, further comprising sending an
indication to a source of the request as to which, if any, of
the groupings have incorporated and verified the computing
firmware settings.

10. The method of claim 8 wherein the data center
capacity management policy is a target availability goal.

11. The method of claim 5 further comprising causing
identification of at least one computing resource to incor-
porate and verity the selected abstract firmware setting and
initiating at least one verification task to verify that the
computing resource satisfies the predetermined criteria after
incorporating the selected abstract firmware setting.

12. The method of claim 11 further comprising evaluating
data received from the at least one computing resource and
verifying that the computing resource satisfies the predeter-
mined criteria after incorporating the selected abstract firm-
ware setting.

13. The method of claim 5, further comprising using a
fitness function to determine whether the at least one of the
hardware-specific firmware settings meets the predeter-
mined criteria.

14. One or more non-transitory computer-readable stor-
age media having collectively stored thereon executable
instructions that, when executed by one or more processors
of a computer system, cause the computer system to:

receive a selected abstract firmware setting; and

identify at least one computing resource capable of imple-
menting firmware settings corresponding to the
selected abstract firmware setting, the at least one
computing resource identified based on a determination
that one or more hardware-specific firmware settings
incorporated on the at least one computing resource is
compatible with the selected abstract firmware setting,
wherein it is verified that the at least one computing
resource satisfies predetermined criteria after imple-
mentation of the firmware settings, and wherein:

a plurality of abstract firmware settings are mapped using
an interface of an abstraction firmware framework to a
plurality of hardware-specific firmware settings for a
plurality of computing resources;

the abstract firmware settings are different from the hard-
ware-specific firmware settings, and

the abstract firmware settings are independent of vendor-
specific settings.

15. The computer-readable storage media of claim 14
further storing thereon executable instructions that, when
executed by the one or more processors of a computer
system, cause the computer system to adjust the firmware
settings based on a fitness function.

16. The computer-readable storage media of claim 15
further storing thereon executable instructions that, when
executed by the one or more processors of a computer
system, cause the computer system to use at least one
criterion as a performance goal.

US 9,471,784 Bl
19 20

17. The computer-readable storage media of claim 14
wherein performance testing is performed iteratively to
identify a final set of firmware settings based on a fitness
function.

